Date _____ due _____

Comparing Ratio and Parallel Methods

5.4L

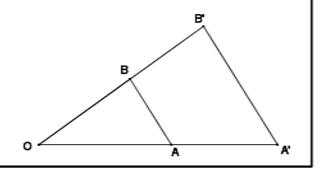
(DN) When things are **proportional** they have equal ratios. Copy the equation and use a calculator (or simplify) to verify that the values are **proportional** as the equation suggests.

$$\frac{10}{15} = \frac{2}{3} = \frac{18}{27}$$

Name

Per

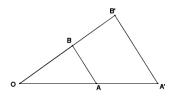
LO: I can show how the parallel method and ratio method lead to one another and to the side splitter theorem. I can use and explain the side splitter theorem.

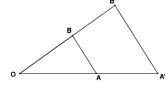

(1) ruler and setsquare

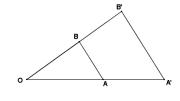
Side Splitter Theorem

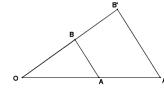
(a) Read the statement of the side splitter and use the diagram to make sense of it. Complete the steps below to help you.

Restatement of the triangle side splitter theorem:

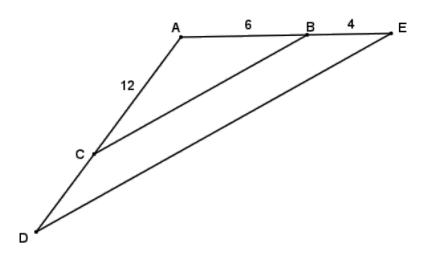

In \triangle OA'B', \overline{AB} splits the sides proportionally (i.e., $\frac{OA'}{OA} = \frac{OB'}{OB}$) if and only if $\overline{A'B'} \mid \mid \overline{AB}$.

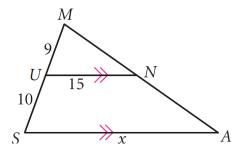



(b) Trace the "side splitter" in the diagram above with a highlighter. (Hint, which segment "splits" or divides sides of a triangle into smaller segments?)



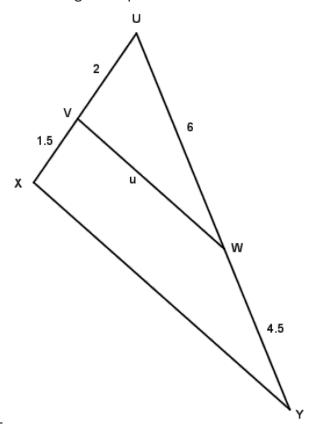
(d) Because a side splitter results in a scale drawing, we can write several proportions:





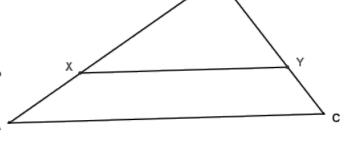
(2) Side Splitter Theorem: using it to answer questions and solve problems

calculator Given the diagram, AC=12, AB=6, BE=4, $\angle ACB=x^{\circ}$, and $\angle D=x^{\circ}$, find CD.



Find x. **(h)**

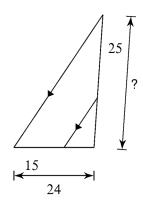
(4) Scale drawings using the parallel method


What conclusions can be drawn from the diagram shown to the right? Explain.

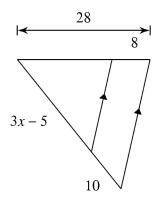
(5) Exit Ticket

In the diagram, $\overline{XY} \parallel \overline{AC}$. Use the diagram to answer the following:

- 1. If BX = 4, BA = 5, and BY = 6, what is BC?
- 2. If BX = 9, BA = 15, and BY = 15, what is YC?



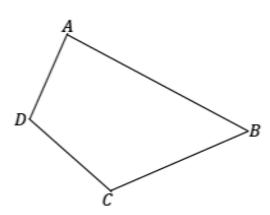
Not drawn to scale


(6) compass, straightedg

Homework:

 \square (1) Find the measure of the segment with the question mark.

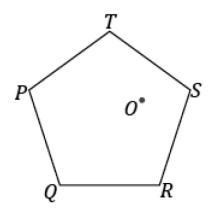
 \square (2) Find the value of x.


(3) Construct a 30° angle. Try on your own first, then see the hint at the bottom of the page.

(6)	The parallel method Fractional scale factors
cont.	<u>(4)</u>

cont. ruler and setsquare

With a ruler and setsquare, use the parallel method to create a scale drawing of quadrilateral ABCD about center O with scale factor $r=\frac{3}{4}$. Verify that the resulting figure is in fact a scale drawing by showing that corresponding side lengths are in constant proportion and that the corresponding angles are equal in measurement.



(6) ruler and setsquare

Homework:

 \square (5)

With a ruler and setsquare, use the parallel method to create a scale drawing of pentagon PQRST about center O with scale factor $\frac{5}{2}$. Verify that the resulting figure is in fact a scale drawing by showing that corresponding side lengths are in constant proportion and that corresponding angles are equal in measurement.

